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Abstract

In this paper, we examine stability issues that arise when computing the

search directions (Ax, Ay, As) for a primal-dual path-following interior point

method for linear programming. The dual step Ay can be obtained by solv-

ing a weighted least-squares problem for which the weight matrix becomes
extremely ill conditioned near the boundary of the feasible region. Hough and

Vavasis proposed using a type of complete orthogonal decomposition (the COD
algorithm) to solve such a problem and presented stability results. The work

presented here addresses the stable computation of the primal step Ax and the

change in the dual slacks As. These directions can be obtained in a straight-

forward manner, but near-degeneracy in the linear programming instance in-

troduces ill-conditioning which can cause numerical problems in this approach.

Therefore, we propose a new method of computing Ax and As. More specifi-

cally, this paper describes an orthogonal projection algorithm that extends the

COD method. Unlike other algorithms, this method is stable for interior point

methods without assuming nondegeneracy in the linear programming instance.
Thus, it is more general than other algorithms in this respect. Numerical tests

indicate that it is more reliable than standard algorithms on near-degenerate
problems.

*This work was partially supported by ONR grant NOO014-96-1-0050 and NSF grant DMS-

9505155.
f part of this work ~M done while the author was ~ member of the Center for Applied Mathematics

at Cornell University.
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1 Introduction

We consider solving the following primal-dual pair of linear programming prob-
lems, given in standard form:

minimize

subject to

and

maximize

subject to

CTX

Ax= b, (1)

bTy

ATy+s=c, (2)

S>o.

In this setting, A c IR‘x” is known and has rank m, b E lR~ and c c lRn

are given, and x,s ~ lRn and y 6 lRn are unknown. While many algorithms for

solving these problems appear in the literature, the focus of this paper is primal-

dual path-following interior point algorithms. In particular, we consider the

linear algebra problems that arise in the computation of the search directions.

For an overview of interior point methods, see Gonzaga [11], M. Wright [28],
or S. Wright [30].

We start with a brief summary of the path-following approach, beginning
with the optimality conditions which are given by:

Ax = b,

ATy+s = C,

SXe = O

X>o , S>o,

where S = diag(s), X = diag(x), and e is the vector of all ones. Introducing a

parameter p >0 into the third equation perturbs the optimality conditions to

the following:

Ax = b,

ATy+s = C,

SXe = pe, (3)

X>o , S>o.

If both (1) and (2) have strictly interior points, then this system of equations

has a unique solution for every p >0. The set of all solutions as p ranges from

O to co is the centra~ path, which was first defined by Bayer and Lagarias [1],

[2], [3], Megiddo [15], and Sonnevend [21]. Notice that p = oo corresponds
to the analytic center of the feasible region, and p = O corresponds to the
optimal solution of the linear programming problems. Thus, in order to obtain
the optimal solution via the central path, the system of equations (3) is solved

repeatedly with a sequence of values for p that tend to zero.
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More specifically, given (x, y,s) that approximates a point on the central

path, it is necessary to solve (3) with a smaller value of p for the next approx-

imate central path point (x + Axt y + Ay, s + As); i.e., solve

A(x+ Ax) = b,

AT(y+Ay) + (s+ As) = C,

(S+ AS)(X + AX)e = jie,

x+ Ax>o , s+ As>O,

where ji < p. Solving for the unknowns (Ax, Ay, As), applying (3), and lin-

earizing the third condition yield the Newton equations:

AAx = O, (4)

(5)
A~Ay+ AS = 0’

XAS + SAX = Fe – XSe. (6)

Notice that the search directions (Ax, Ay, As) are uniquely determined by

this system of equations. The remainder of this paper focuses on the stable

computation of the solution to this system of equations.

The following section contains the derivation of the weighted least-squares

problem that must be solved in order to obtain Ay. This turns out to be a

problem of the type addressed by Hough and Vavasis, [14], and thus, the results
of that paper apply. A discussion of numerical problems that may arise when

computing of Ax and As appears in $3. Rather than using the straightforward
approach to obtain these directions, we propose using orthogonal projections

to compute scaled versions of these directions. This method is an extension of

the COD algorithm described in Hough and Vavasis. Numerical experiments in

which the extended COD algorithm was incorporated into two different interior

point methods were done to test its performance in practice. The results of these

experiments appear in 54. An overview of related work and some conclusions

make up the remainder of the paper.

2 Computing Ay

In the primal-dual setting, it is necessary to compute both a primal step and

a dual step at each iteration. As described in the previous section, these steps

are related by and uniquely determined by the Newton equations. We first
focus on obtaining Ay, which can be accomplished by solving a weighted least-
squares problem. The derivation of that problem follows. First, the other
variables must be eliminated from the system of equations. Solving (6) for As
and substituting into (5) yield

ATAy = –jlX-le + s + X-lSAX.

Multiplying both sides of the previous equation by AS-lX and. applying (4)

give

AS-lXATAy = AS-lX(S – ~X-le).
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Since S-lX is a diagonal matrix, we write

ADATAy = AD(s – jiX-le), (7)

where D = S–lX. Notice that this is the system of normal equations for the
weighted least-squares problem given by

min @/2(ATAy – v) ,
AyEIRm

(8)

where v = s–j!iX-l e. Notice also that since (x,s) > 0, the matrix D is positive
definite. A final point to note is that some entries of s and some entries of x

approach zero near the boundary of the feasible region, so D becomes extremely
ill conditioned. Since problems of this type often arise in applications, a great

deal of work, both theoretical and algorithmic, has been done with regard to
solving them. of particular interest are some norm bounds that prove to be

quite useful in the upcoming analysis. The results were first derived by Dikin
in 1974 [6] and have been rediscovered independently by a number of authors.

The most recent of these are Stewart in 1989 [22] and Todd in 1990 [23]. For a

survey of this and related work, see Forsgren [7]. The norm bounds in question

are given in the following theorem.

Theorem 1 Let D denote the set of all positive definite n x n real diagonal

matrices. Let A be an m x n real matrix of rank m. If we define XA and 2A as

follows:

a) XA = sup{ll(ADAT)–lADll : D G ‘D}, and

b) ~~ = sup{llAT(ADAT)-lADll : D c D},

then both XA and 2A are finite.

The norm in the previous theorem can be any matrix norm induced by a vector

norm, but in this paper, II-l] = [l.llz . Similarly, K(M) = K2(Lf), where K(M) is
the condition number of the matrix M.

The finiteness of XA and 2A suggests that it is possible to compute a solution
to a system of equations of the form (7) or (8) which satisfies an error bound

that is independent of D. While the construction of an actual algorithm is not

apparent, this observation does serve as motivation for the following specialized

definition of stability, proposed by Vavasis [25].

Definition 1 An algorithm for solving a problem of the form of (7) or (8) is

stable if, in the presence of jinite-precision arithmetic, an error bound of the
form

[lAy - Ajll < c of(A). [lV/l (9)

is satisfied, where Ay is the true solution, Ay is the computed solution, f(A)

is some function of A not depending on D, and E >0 is machine roundofi.

Note that the right-hand side of (9) is independent of D.

There are many algorithms for solving problems like (7) and (8) that ap-

pear in the literature, but stability analyses which prove a bound like (9) do
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not currently exist for most of these algorithms. Two exceptions are the NSH

method proposed by Vavasis [24] and the COD algorithm proposed by Hough

and Vavasis [14]. The COD algorithm has a couple of advantages over the NSH

method. Unlike the NSH method, the COD algorithm is based on standard
techniques. Additionally, the COD algorithm requires less work because the

NSH method requires solving a larger system of equations. Thus, we will use
the COD algorithm to solve the weighted least-squares problem (8). For com-

pleteness, an outline of the algorithm follows.

Algorithm: Complete Orthogonal Decomposition (COD)

Step 1: QR factor, with column pivoting, AD1/2 to get

where Q is an m x m orthogonal matrix, R is an m x n upper triangular ( “trape-

zoidal” ) matrix, and P is an n x n permutation matrix.

Step 2: Apply reduced QR factorization (without pivoting) to RT to get

RT=ZIU1, (11)

where Z1 is an n x m matrix with orthonormal columns, and U1 is an m x m

upper triangular matrix.

Step 3: Solve the following system, via back substitution, for y:

Uly = Z; PD112V. (12)

Step 4: To get y, multiply the result of Step 3 by Q:

Ay = Qy. (13)

The paper by Hough and Vavasis contains a detailed discussion of the stability

of the algorithm and other numerical issues that arise. Therefore, we forgo any

further discussion of the computation of Ay. Instead, we shift the focus to de-
termining Ax and As. The following section contains a discussion of numerical

issues that arise and a description of how the COD algorithm can be extended
to stably compute these directions.

3 Computing As and Ax

The dual step Ay constitutes only part of the information that is needed at

each iteration. It is also necessary to determine the primal step Ax and the
change in the dual slack variables As. Once Ay has been obtained, it is apparent
from the central path equations that computing Ax and As is straightforward.

Solving (5) and (6) yields the following:

As = ATAy, and (14)

Ax = @-le – S-lXAs. (15)
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However, this approach is not numerically stable. The forward error bound (9)

is not sufficiently strong to get a suitable accuracy bound on the entries Ax
and As, because some components are very small as convergence is achieved

[29], or more generally, as the boundary of the feasible region is approached.
This means that there is a demand for more accuracy in some components of

ATAy than what could be obtained from (9). To clarify this, let us consider

the following two-variable example, given in dual form:

maximize looyl – yz

subject to 15yl, y2,5u

Since there is significantly more emphasis on yl, an interior point method will
first maximize with respect to yl, then with respect to yz. To illustrate, the

feasible region and the central path for this problem are shown in Figure 1.

Notice that near the boundary (e.g. at point P on the central path), the
distance SI to the boundary is small. As a result, the magnitude of Asl will
also be small (since it is limited by the size of Sl). So As must be computed

in such a way that there is a small relative error in Asl, i.e., the error in Asl

should be small relative to S1. However, the step from point P has a very small

change in the yl direction and a large change in the y2 direction. Obtaining

As via (14) implies that the contributions from Ayl and Ay2 are treated as

“equal”. This means that any error in Ay2 will be introduced into Asl, which

is small relative to Ay2. While the normwise error in As may be acceptable,

the relative error in Asl may not be since Ay2 is large compared to S1. This

large relative error is then passed on to the entries of Ax in (15). Thus, it is
necessary to find a way to compute these directions with more accuracy than

can be guaranteed by using (14) and (15).

In order to obtain the desired accuracy, we propose first computing scaled
versions of Ax and As and then unsealing to obtain the desired directions.

This approach makes use of an orthogonal projection formed from orthogonal

factors in the COD. The scaled As can be obtained as follows. The normal

equations (7) imply

Ay = (ADAT)-lAD(s – ~X-le).

Substituting this into (14) and multiplying both sides by D1/2 give

D1/2As = _D1/2ATAy = D1/2AT(ADAT)-lAD(~X-le – s).

Notice that on the right-hand side of this equation, D is embedded in a matrix

that must be inverted. This cannot be done accurately when D is ill condi-

tioned, but it is not difficult to see that this matrix need not be inverted. Work-
ing through the steps of the COD algorithm shows that D1/2AT = PTZIUIQT.

Substituting for D1/2AT in the previous equation yields the following:

D1/2As = pzlz~pTD1/2(pX-le – s). (16)

Thus, matrix multiplication and subtraction are the only operations required.

Since the goal is to obtain a forward error bound on the entries of D1/2As,
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y2=u

—

P

yl=u

y2=l

Figure 1: The feasible region and the central path for the given example appear above.

The central path approaches the VI boundary first and then proceeds to the optimal

solution. Notice that the magnitudes of the changes in the two directions can differ

by a significant amount near the boundary.
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we must have forward error bounds for the factors on the right-hand side. We

first show that the error in 21 is bounded. (Recall that we are trying to obtain

error bounds that are independent of D.) Note that this is asserted in Hough

and Vavasis but not proved [14]. The theorem and proof appear below.

Theorem 2 Let 21 be as in step 3 of the COD algorithm, and let 21 be the

corresponding computed matrix. Then

21 – 21 < c.k. f(A) +O(c2), (17)

where k is a small constant, c is machine roundofl, and f(A) is a function of

A not depending on D.

Proof: Recall from Step 3 of the COD algorithm that RT = ZIU1. In order

to use the results of Hough and Vavasis, we consider instead RTD– 1/2 = 21 Uo,

‘1/2 Let 21 and ~. be the corresponding computed matrices,where U. = UID .

and assume that the signs of the diagonal entries of U. are the same as those

of the corresponding entries of Uo. standard backward error analysis (see [13])
implies that there exists a matrix 21 with exactly orthonormal columns such
that

Z1–zl <cc (18)

and such that 21~o = 21 U. + E, where

IIEII < CE RTD-1/2 (19)

and c is a small constant. We proceed as follows. Multiplying both sides on

the right by UO–l gives

21uoU;1 = 21 + EUO-l. (20)

We now multiply this equation by its transpose to obtain

(2@oU;1)T(21/joU;l) = (Zl + EU;l)~(Z1 + EU{l),

or

@OU;l)T(tiOU;l) = 1+ Z:EU;l + (Z: EU;’)T + 0(c2).

Notice that this is the Cholesky factorization of some matrix.
Now let El = Z~EUo–l. Notice that El + E: can be written as

E1+Ef=L+W+LT,

where L is strictly lower triangular and W is diagonal. It is not difficult to see

that

(I+ W/2+ LT)T(I+W/2+LT) = I+ E1+E:+O(62).

Also, 1 + W/2 + LT is upper triangular, so by uniqueness of the Cholesky

factorization

Ud.lo- 1 =I+VT72+LT+O(E7.
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Substituting this into (20) yields

21(1 +W/2+ L~+O(~2)) = 21 + EU:l

and thus
ZI – 21 = 21( W/2+L~) + EU;l +O(C2).

Since W/2 + LT is part of El + E~, then

llW/2+LTll < 211EII] S 2. [IEII oIIU;lII .

so

(21)

(22)

< 3. \\E[l . IIuO-lll +0(~2) +CC

~ Sacc. ~TD-lj2
— ll.l\u;’ll +c.6+o(E2).

The second inequality comes from (21), (22), and (18). The third line comes

from (19). Recall from Hough and Vavasis that llRTD-1/211 s ~1(A) and that

IIU:lII = llD1/2U;111 < j2(A), where fl(A) and ~2(A) do not depend on D.

Substituting these bou~ds into the above inequality and combining terms yield

the final result:

ZI –21 s C.k Of(A) +O(C2),

where k incorporates the constants and f(A) incorporates

in the previous sequence of inequalities.
the functions of A

•1

We now return to the computation of D112As. Recall (16):

Dlj2As = PZlZ~PTD112(~X-le – s).

Theorem 2 can be used to show that the forward error in the orthogonal pro-
jection PZI Z~PT is bounded by a function that is independent of the weight
matrix D. In order to say something helpful about the factor D1/2 (~X–le – s),

we need the relationships D1/2 = S–112X112 and XSe z Fe. These two facts
imply that D1/2(~X–le – s) w p112e. Since forming the right-hand side in-
volves scaling and subtraction (to obtain p112e) and then multiplication by the

orthogonal projection, it is not difficult to show that

DlfzA~ – @/2Ai ~ E . /#f2 . C . g(A),

where D1/2As is the exact result, D1/2A& is the computed result, e > 0 is
machine precision, c is a constant, and g(A) is a function of A that does not
depend on D. An entrywise error bound can now be obtained as follows. Notice
that (Dl\2As)i = diAs; . So

d?2 lAsi – A~i% 1= d~~2Asi _ d~12Aii

< D~12& _ @12Ag

s c.pl/2. c.g(A).
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Recall that D1/2 = S-112X112 and XSe c pe. So d~12 m pl/2/si and

(23)

and thus,
lAsi - AS;!

<~. c.g(A) (24)
s~

for 1 ~ i s n. Notice that this means that the error in each entry of As is

bounded relative to the corresponding entry in s, and the bound is independent

of D. Therefore, the goal has been obtained.

Computing Ax with the required accuracy is now straightforward. First,
recall that (15) says

Ax= @-le – x – S-lXAs.

Recall also that D = S-lX. Substituting this into the previous

multiplying both sides by D-1/2 yield

D-112Ax = D-1/2 (jZS-le – x) – Dlf2As.

equation and

It is not difficult to show that the corresponding entries of both terms on the

right-hand side are of similar magnitude. Since only scaling and subtraction

are involved, it is easy to show that the forward error in each entry of D–112Ax
is bounded by a function independent of D. Using an argument similar to the

one for As, we find that the entries of Ax also satisfy an error bound of the

form
lAxi - A~il

<c. c.g(A), (25)
xi

where c >0 is machine precision, c is a constant, and g(A) is a function of A.

These error bounds demonstrate that despite contributions from directions of

different magnitudes, this method computes Ax and As with suitable relative
accuracy in each component.

Now that the stability results have been established, it remains to be seen

how the extended COD algorithm performs in practice. The results of compu-

tational experiments appear in the next section.

4 Numerical Results

The extended COD algorithm has been implemented and incorporated into two

primal-dual interior point methods. The first is a feasible predictor-corrector

method developed by Mizuno, Todd, and Ye [17], and the second is the infeasi-
ble predictor-corrector method of Mehrotra [16] (as implemented by Zhang in
LIPSOL [31]). Each interior point algorithm was also implemented with some

variation of Cholesky factorization for comparison purposes. The algorithms
and the results of the experiments are described in the following subsections.

Two types of test problems were used. The first group includes small short-

est path problems designed to be “torture” tests for the algorithms. Even
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though there are specialized algorithms for solving shortest path problems,

they make nice test problems for two reasons. First, the matrix A for these

problems is a reduced node-arc incidence (RNAI) matrix. Vavasis showed that

XA and 2A are bounded by the size of the matrix for RNAI matrices [24]. Thus,

it is easy to evaluate the strength of the error bounds in this case. Secondly,

the solution can be determined by inspection, so it is possible to determine

whether or not the COD algorithm is performing according to expectations.

The other set of problems consists of the small NETLIB problems. These
were tested in two ways. First, the COD implementations of the algorithms
were used to compute the solutions to the problems. These solutions were

compared to known solutions in order to determine whether or not the COD

algorithm computed the correct solution. The results were also compared to
those obtained using the Cholesky implementations. The problems were then

modified in the following way: near-degeneracies were introduced by making
some inactive constraints at the solution near active and then modifying the

original problems accordingly. This was done in such a way that the solutions
are unaffected. The results obtained using both the COD and the Cholesky

implementations were compared in order to determine which solver performed
better.

4.1 The Algorithm of Mizuno, Todd, and Ye

One of the interior point algorithms used for computational experiments is a

predictor-corrector method proposed by Mizuno, Todd, and Ye [17]. Briefly,

each main iteration consists of the following steps. A “predictor” step is com-

puted by solving (4), (5), and (6) with P = O. Then a line search is performed to
determine the longest step for which the next iterate will be within a specified
distance a c (O, 1) of the central path. For these experiments, the parameter

Q is chosen to be close to 1 to allow for longer steps rather than shorter, more

centered steps. After x, y,s, and p have been updated according to the pre-
dicted step, the iterates are centered. This requires repeatedly solving (4), (5),

and (6) with the new value of p and updating x, y, and s until the result is

within ~ ~ ((), 1) of the central path, where ~ < a. In contrast to a, @is close to
O since the goal is to bring the iterates in close to the central path. An outline

of the algorithm is given below.

Algorithm: Mizuno, Todd, and Ye

Given an approximately centered starting point (x(o), y(o), s(o)) and p(o), pro-

ceed as follows.

While (x(~l)~s(k) > tol

(predictor st~~) ~kl ~k)

compute AxP , AyP , ASP

determine largest 9 such that
(X(~)+OAX~)).*(st’l+6@ ) _ ~ < ~

Jk)

.

--
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(corrector st~fi) ~k)
(k)

compute AxC , AyC , AsC
(k) - _ - + Ay~k),~ = E+ As~k)set X=5Z+AxC ,y—y

end

set k = k+l,x(k) =X,y(k) =Y,S(k) = 5

end

The question that remains is that of how to obtain the feasible starting
point (x(o), y(o), s(o)) and po. In order to do this, the algorithm is implemented

in a Phase I - Phase II manner. The linear programming problem itself is solved

in Phase 11, but the initial point is determined in Phase I. The procedure is as

follows. Artificial variables are introduced into the original problem in order

to construct a larger linear programming problem for which a feasible starting

point is known. This larger problem can be solved to optimality, and it would

be possible to obtain the optimal solution to the original problem. However,

this would require more work than solving the original problem, so the interior

point method is run on the larger problem only until a suitable starting point
for the original problem can be extracted. Then the interior point method is
used to solve the original problem with the starting point found in Phase I.
The results of the computational tests are taken from Phase II, so we go into

no further detail about Phase I.

An example from the shortest path test problems is given in Figure 2. The

matrix A is the reduced node-arc incidence matrix for this graph, the entries of

the vector c are the edge weights, and the vector b contains a –1 in the fifth

entry and a 1 in the second entry (thus describing the locations of the source

and the sink). Recall that two different methods for solving the weighted least-

squares problems were used. The first is the COD algorithm. The other is
solving the normal equations via Cholesky factorization. For these tests, the
MATLAB Cholesky function was used. When 6 = 10-6, the Cholesky imple-
mentation of the Mizuno, Todd, and Ye algorithm reaches a point where the
coefficient matrix of the normal equations is no longer recognized by MATLAB

as being positive definite. The algorithm stops at this point without finding

the shortest path. On the other hand, the COD implementation computes the

shortest path with accuracy on the order of machine precision.

The next set of examples includes some of the small problems in the NETLIB

test set. The purpose of these tests is to verify that the implementations work

correctly for problems where the solution is already known. The results are

shown in Table 1. Notice that both the Cholesky and the COD implementations
compute the correct solution, and the same number of calls to the solver of the

weighted least-squares problem is made in each case. This is not surprising

since the Cholesky solvers are quite robust, and we expect the real advantage

of the COD algorithm to be seen in near-degenerate problems.

When near-degeneracy is introduced into the problems, we again find that
both implementations make the same number of calls to the solver as they
converge to the solution. (See Table 1.) Similar results were obtained for other

NETLIB test problems used for numerical tests. It is unclear at this point why
the performance of the Cholesky algorithm and the COD algorithm on the near-
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Figure 2: The above graph illustrates a near-degenerate shortest path problem. It is

clear that the shortest path from the source (node 5) to the sink (node 2) consists of

edges 9, 10, 3, and 4. However, the Cholesky implementations of the interior point

methods fail with small values of J while the COD implementations find the correct

path.
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Table 1: This table contains a summary of the numerical results for the NETLIB

test problems solved using the Mizuno, Todd, and Ye algorithm. Notice that the

performance of the two implementations is comparable.

number of number of

I problem I calls to I calls to I

Cholesky COD

( NETLIB afi ro 21 22

1
r

!

problems sc50a 30 30
unchanged sc50b 27 27

with afi ro 42 43

I near- t sc50a i 51 i 52
1 1

degeneracy sc50b 25 25

degenerate NETLIB problems is so similar. However, while these results may
be inconclusive, the results obtained for the shortest path problems (like the

one in Figure 2) indicate that there are cases in which it is clearly advantageous
to use the COD algorithm.

4.2 LIPSOL

LIPSOL is an implementation (written by Yln Zhang) of the interior point

method of Mehrotra. This is an infeasible second-order predictor-corrector
method. Because it is an infeasible method, the iterates move toward feasibility
as they move toward the solution, and the equation which forces centrality is not

linearized since the method is second order. Therefore, the system of equations
to be solved is somewhat different than (4), (5), and (6). In this setting, it is

necessary to compute (Ax, Ay, As) such that

AAx = b – Ax,

ATAy+As = C–ATy– S, (26)

XAS + SAX = pe – XSe – AXASe.

The solution of this system of equations is broken down into two steps. The
first is the predictor step, which finds the affine scaling search direction. This

is accomplished by solving

AAxP = b–Ax,

ATAyP + ASP = c–ATy–s, (27)

XASP + SAXP = –XSe. ,

Notice that the nonzero terms on the right-hand side introduce additional terms
into the least-squares problem defined in ~2. Following a derivation similar to

that in ~2 yields the following system normal equations:

ADATAyP = AD [(C – ATy) + D-lp] , (28)
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where p = ATq, AA~q = b – Ax, and D = S–lX. Notice that c – A~y looks

like s and p looks like AxP, so the corresponding entries of the terms on the

right-hand side have the same order of magnitude.

We take a moment here to point out that the Cholesky implementation

used in LIPSOL is the sparse Cholesky algorithm of Ng and Peyton [20], with

a slight modification in the handling of small diagonal entries which is described

in [31]. Thus, LIPSOL is expected to be quite robust.

Similarly, the equations defining AxP and ASP are somewhat different. Con-
tinuing with the derivation as in ~3 yields the following equation for the scaled
version of ASP :

D112AsP = D112(c– ATy – S) – ~ZIZl P [( ]()T T D1/2 C – ATy) + D–1’2P . 29

We offer an intuitive explanation of why ASP computed in this manner satisfies
(24). As the solution is approached, the first term on the right-hand side tends

to zero and makes a negligible contribution. In the second term, c – ATy tends

to s, and p looks like AxP. So arguments similar to those in ~3 imply that the

nonorthogonal factor in the second term looks like pli2e, and an error bound
like (24) can be obtained. Arguments similar to those in $3 imply that if AxP

is ‘computed by using

D-~i2A~P = _D-~i2x – D~12As
p7 (30)

then it will satisfy an error bound like (25).

After the predictor step is determined, the corrector step is computed. This

takes into account the centering and the second-order term. The values of Axp

and ASP computed in the previous step are used to “predict” the second-order

term, and the system of equations solved at this step is given by

AAxC = O,

ATAyc + Asc = O, (31)

XASC + SAX= = pe – AXPASPe.

Again, the equations look somewhat different from those for a feasible method,
but the stability arguments are similar. Thus, the specific equations and dis-
cussions are omitted here.

To obtain the solution to (26), the solutions to
as follows:

Ax = Axp + Axc,

Ay = AyP i- AY.,

As = Asp+ AsC.

(27) and (31) are combined

There was one minor change made to the LIPSOL code. In LIPSOL, there
are constant upper bounds imposed on the entries of the weight matrix D. These

prevent D becoming arbitrarily ill conditioned, and it is not known how these

caps affect the convergence of the interior point algorithm (since the systems

of equations are being solved with a perturbed D). As we are interested in
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Table 2: This table contains a summary of the numerical results for the NETLIB test

problems solved using LIPSOL. Notice that while theperformances of the Cholesky

implementation and the COD implementation are comparable for the unchanged

problems, the COD implementation is more reliable for the near-degenerate problems.

Here n.c. indicates that the algorithm halted without converging.

number of number of

problem iterations, iterations

Cholesky COD

NETLIB afi ro 7 7
problems sc50a 9 9

unchanged sc50b 8 8

with afi ro n.c. 11
near- sc50a n.c. 12

degeneracy sc50b n.c. 9

the performance of algorithms when D becomes arbitrarily ill conditioned, the

caps were removed.

LIPSOL was used to solve the same set of test problems as the Mizuno,
Todd, and Ye algorithm. For the example illustrated in Figure 2 with 6 = 10-8,

the Cholesky implementation converges to

[001100.2.80 .8.80]T,

which is not even a valid path. On the other hand, the COD implementation

finds the correct shortest path.

Table 2 contains the results for the NETLIB problems. For the unmodified

problems, both implementations converge to the solution in the same number
of iterations (with two calls to the linear system solver per iteration). For the

near-degenerate problems, however, the Cholesky implementation halts without
converging, but the COD implementation converges to the solution. Thus, the

advantage of using the extended

results.
COD algorithm is clear in these experimental

5 Related Work

The problem of stably computing search directions for interior point methods
has received a fair amount of attention in the literature [9]. Among those
who have studied such problems are Coleman and Liu [5], Forsgren, Gill, and

Shinnerl [8], Gill, Saunders, and Shinnerl [10], Gould [12], Murray [18], Nash

and Sofer [19], M. Wright [27], and S. Wright [29]. One difference between these
other works and this one can be summarized as follows. The other authors

typically consider a more general problem, one in which the weighted least-

squares problem has the form min [lH1/2(Ay – b) [[, where H is symmetric

and positive definite, but not necessarily diagonal. This is a problem that we
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currently cannot address with the techniques presented in this paper. In some

recent work, Forsgren [7] derives a result similar to Theorem 1 for such matrices

If that are also diagonally dominant. This is accomplished by defining a new

type of diagonal decomposition which is used to transform the problem into

one to which Theorem 1 applies. If this decomposition can be found accurately,

then the methods of this paper can be used. However, the applicability of the

extended COD algorithm to the general case has not yet been determined.

When the problems are specialized to those with diagonal weight matrices
D, the aforementioned authors consider a more restricted problem in that they
all make an assumption that the large and small entries on the diagonal of D

have some correlation with the columns of AT. This corresponds to a nondegen-

eracy assumption about the underlying optimization problem. In contrast, the

stability analysis of the COD method does not involve any restrictions about

where “large” versus “small” entries of D can appear. Thus, it holds without
nondegeneracy assumptions and is more general than other algorithms in this
respect.

6 Conclusions

A common approach to solving linear programming problems is to use a primal-

dual interior point method. In order to compute the search directions (Ax, Ay, As)

needed at each iteration, it is necessary to solve a linear system of equations,
the Newton equations. In particular, a weighted least-squares problem must
first be solved to obtain Ay. However, near-degeneracy in the linear program-
ming instance can lead to ill-conditioning in the weight matrix, which can cause

standard methods for solving weighted least-squares problems to compute so-
lutions with only a few or, in some cases, no digits of accuracy. This is the

problem addressed by Hough and Vavasis, and the COD algorithm proposed in
that paper can be used in this situation.

As in the computation of Ay, near-degeneracy can cause numerical problems

in the obvious method for finding As and Ax. This is the issue that has been
addressed in this paper. To obtain these search directions, we use orthogonal

projections (formed by factors from the COD algorithm) to compute scaled
directions. The actual search directions are then determined by unsealing. We
have demonstrated that when the search directions are computed in this way,

each component has a relative error that is bounded despite the ill-conditioning.

Unlike those of other methods, the stability analysis presented here makes no
nondegeneracy assumptions. Thus, we expect the advantages of the extended
COD algorithm to be seen when it is used to solve near-degenerate problems,
and numerical experiments do indicate that the COD algorithm is more reliable
in this case.

This paper has addressed accuracy issues that arise in the computation of
search directions for interior point methods. Another important consideration is

efficiency. The systems of equations that arise in this setting are typically large

and sparse. Since the COD algorithm is based on dense methods, it is clearly

not the most efficient way to solve these problems. Bobrovnikova and Vavasis

have investigated using iterative methods in this setting. They have proposed
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algorithms (for solving the weighted least-squares problem) based on conjugate

gradients and MINRES [4]. In the case of MINRES, they have proved that

their method converges and that the solution satisfies an error bound like (9).

Numerical results are promising; however, the algorithm experiences a loss of
orthogonality in the search directions for some examples, causing the algorithm
to take more iterations to converge than one would hope. Additionally, this
algorithm has not yet been extended to compute As and Ax. These and other

issues (see [4]) are the topics of continuing work.

Another approach is to use the LIP method proposed by Vavasis and Ye [26].

This algorithm accelerates classical path-following algorithms by interleaving

traditional steps with longer steps, known as layered-least squares steps. As
with the extended COD algorithm, the advantage of the LIP method is most

notable near the solution of the optimization problem and when there is near-
degeneracy in the linear programming instance. The weighted least-squares

problem that describes the layered least-squares step can be solved using a
modification of standard sparse Cholesky techniques, and the solution satisfies

(9). It is also possible to compute As and Ax with suitable accuracy. Again,
numerical results are promising, but there are some issues that still must be

resolved. A more detailed discussion of this approach is postponed until a

future work.
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